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Abstract

One of the major constraints in the marine aquaculture sector is the 
lack of sufficient fish seeds for farming. Live feeds are the critical factor 
influencing the health and survival of the finfish larvae. Copepods are 
nutritionally superior and more easily digestible live feed than the 
conventionally used Artemia and rotifers. The harpacticoid copepod, 
Euterpina acutifrons, is a promising species for finfish larviculture due 
to its hardy nature, adaptability to culture conditions, and small pelagic 
naupliar stages. This study evaluated the effect of different algal and 
non-algal diets on the development rate of naupliar and copepodite 
stages, time taken for maturity, average life span, egg production 
parameters, hatching success, survival rate of nauplius and copepodite 
stages, and population composition of E. acutifrons. The algal diets 
used were Chaetoceros calcitrans (CHA), Chlorella marina (CHL), 
Pavlova lutheri (PAV), and Isochrysis galbana (ISO), and the inert diets 
used included rice bran (RBN), groundnut oil cake (GNC), commercial 
shrimp feed (CSF), and carrot juice (CTJ). The diet CHA+CHL gave 
maximum copepodite survival (89%), faster naupliar development (2.7 
days), faster copepodite development (4.5 days), early maturity (6.7 
days), maximum number of egg sac production (7 nos.), better egg 
production frequency (1.7 days), maximum number of eggs per egg sac 
(22.5 nos.), maximum number of naupliar production (5368.25) and 
maximum adult number (479.25) in the culture population. Performance 
of all non-algal diets except RBN was inferior to that of the algal diets. 
In conclusion, the microalgal diets, especially those diatom-based ones 
and their combinations with other microalgae, remain superior for the 
optimum production of E. acutifrons.
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Introduction

Aquaculture is one of the world’s most significant food-
producing sectors, accounting for approximately half of the fish 
required for human consumption (FAO, 2025). In aquaculture, 
live feed provides essential nutrition for marine finfish larvae, 
particularly during their early developmental stages, and it 
is a major factor determining the survival and overall health 
of the larvae (Sun and Fleeger, 1995; Fleeger, 2005; Drillet, 
2008; Olivotto, 2008). Factors such as size, nutritional factors, 
and acceptance are critical in determining the suitability of 
live feed for fish larval rearing. Artemia and rotifers are the 
popular live feeds used in aquaculture for rearing finfish and 
crustacean larvae. Artemia and rotifers are bigger than the 
mouth size of many fish larvae. These are also insufficient 
to meet all the essential nutritional requirements and often 
require enrichment (Shields et al., 1999; Altaff and Vijayaraj, 
2021; Olivotto, 2008, 2010).

In contrast , the copepods are available in varying size 
ranges, are nutritionally superior and are easily digestible 
compared to Artemia and rotifers. Copepods are a rich 
source of proteins, essential fatty acids, enzymes, and 
vitamins required for the optimum survival and growth of 
marine finfish larvae (Shields, 1999; van der Meeren, 2008). 
Copepods are the natural feed of marine fish larvae in the 
wild (Llopiz , 2013; Robert et al., 2013). The distinctive ‘stop 
and swim’ movement patterns stimulate first feeding, even 
in weak larvae with poor vision ( Støttrup, 2000; von Herbing 
and Gallagher, 2000; Drillet , 2011).
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Copepods naturally feed on microalgae and other suspended 
organic particles (Sautour and Castel , 1993), however, 
under hatchery conditions, non-living organic particles can 
considerably deteriorate the water quality of the culture 
system. Copepods belonging to the Orders Calanoida, 
Cyclopoida, and Harpacticoida are popularly used as live 
feeds in hatchery for  early stages of fish larvae. Calanoids 
are the most studied group as a live feed because of their 
abundance in pelagic waters and suitability for large-scale 
production. Generally, copepods are cultured using microalgae 
as their primary food source. Although there are many 
reports on the culture of harpacticoid copepods using inert 
feed materials ( Støttrup, 2003, 2006; Fleeger, 2005; Ribeiro 
and Souza-Santos, 2011) , it remains challenging to culture 
both calanoids and cyclopoids with low-cost artificial feeds.

Harpacticoids are generally epibenthic copepods that graze 
on organic debris, and there is a possibility of culturing 
this group using inert feeds. Harpacticoids are naturally 
found in many habitats, including the open sea, the deep 
sea, brackish water, and freshwater environments (Huys 
 and Boxhall, 1991). Tisbe spp., Tigriopus sp., and Euterpina 
acutifrons are the major harpacticoid copepods commonly 
used in aquaculture trials. E. acutifrons have more pelagic 
naupliar stages and are reported to be suitable as a live feed 
for marine  finfish larviculture (Kraul, 1989; Støttrup, 1997). 
  The present study mainly focuses on the practical evaluation 
of the effect of selected algal and non-algal diets on the 
important production parameters such as egg production, 
egg hatching, development rate of different life stages and 
population of E. acutifrons.

Material and methods

Collection and isolation of copepods

Zooplankton samples were collected in the early morning 
from the near-shore area of Vizhinjam coast of Kerala, India 
(8o20’45.60” N, 76o69’2.40” E). The samples were collected 
using a 150 µm plankton net (Gallienne and Robins, 2001) 
and transferred immediately to the laboratory with sufficient 
aeration. In the laboratory, collected samples were filtered 
through a 500 µm sieve to remove the non-targeted large 
organisms and then diluted with fresh  seawater.  From the 
diluted samples, E. acutifrons were isolated and stocked into 
1000 ml glass beakers containing 800 ml of fresh seawater 
(Santhosh et al., 2018).

Development of stock culture

Samples from each  glass beaker were thoroughly examined 
under a stereo-zoom microscope (Leica S8APO) for mature 

adult females of E. acutifrons with egg sacs and were isolated 
with the help of Pasteur pipettes.  Separated organisms (n=50) 
were washed thoroughly several times to avoid any possible 
contamination and transferred to new 1000 ml glass beakers 
containing 800 ml filtered, fresh seawater of salinity 35 ppt 
and mixed microalgae (Norsker, 1997;  Støttrup and Norsker, 
1997; Rajthilak et al., 2014; Santhosh et al., 2018). The glass 
beakers were incubated in sufficient light and aeration, and 
partial water exchange was carried out on alternate days. The 
culture was frequently monitored for population growth and 
any possible contamination (Santhosh et al., 2018). Faecal 
pellets and algal debris were removed routinely with 10-20% 
water replacement. The samples were serially  transferred 
to larger containers of varying capacities (2 l, 5 l, and 10 l) 
with a minimum density of 0.5/ml.  Upon achieving a density 
of 1/ml in 10 l containers, the culture was upscaled to 300 
l capacity round high-density polyethene (HDPE) tanks, 
filled with 150 to 180 l of fresh seawater. The cultures were 
thoroughly screened for contamination during the scale-up 
process (Santhosh et al., 2018).

Algal stock and mass culture

From the algal stock culture facility of the Regional Centre of 
ICAR-CMFRI, Vizhinjam, the microalgal species Chaetoceros 
calcitrans, Chlorella marina, Pavlova lutheri, and Isochrysis 
galbana were collected. Stock and mass cultures of adequate 
quantity were prepared and maintained using standard 
methods, using Walne’s medium (Walne, 1970) for feeding the 
copepods (Santhosh et al., 2018). The axenic algal cultures 
were harvested and fed to copepods when the culture was 
in the exponential growth phase.

Preparation of experimental diets

The diets used for the feeding trials were prepared using 
microalgae and inert feeds according to standard methods 
(El-khodary et al., 2020; Magouz et al., 2021). Inert feeds were 
purchased from the local market. The microalgae and prepared 
inert feeds were fed to copepods at a  carbon equivalency 
of 1500 µg l-1 during the experiment (Strathmann, 1967). The 
algal density was maintained by adding sufficient quantities 
of algae as and when required. The microalgae, C. calcitrans 
(CHA), C. marina (CHL), P. lutheri (PAV), and I. galbana (ISO) 
were used for the trials.  The algal diet was prepared as a 
mixture of two species at a ratio of 1:1 (A’tirah et al., 2016).

Inert feeds used for feeding trials included rice bran (RBN), 
groundnut oil cake (GNC), commercial shrimp feed (CSF), 
and carrot juice (CTJ) (Kahan, 1979; Phatarpekar et al., 2000). 
The GNC (5 g) was soaked in 100 ml of sterile seawater for 30 
minutes and then thoroughly mixed using a kitchen blender 
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to break up the clumps (Rhodes, 2007; El-khodary et al., 2020; 
Magouz et al., 2021). The water containing suspended GNC 
particles was filtered through a 20 µm sieve, and the filtrate 
was used as the diet for the experiment. Similarly, freshly 
prepared carrot juice in seawater was sieved through a 20 
µm filter mesh, and the filtrate was used to feed the copepod 
( Perumal et al., 2008; Rajthilak et al., 2014). Approximately 10% 
of the water was replaced every 24 hours, and a sufficient 
amount of feed was added to maintain adequate feed density.

Isolation of nauplii of E. acutifrons

Adult copepods from stock culture were filtered through a 
200 µm filter mesh and stocked in tanks containing 200 l 
of chlorinated, dechlorinated, and filtered seawater at room 
temperature (28 °C). After 24 hours, the whole culture was 
filtered using a 125 µm filter mesh by gentle siphoning, and all 
the newly hatched nauplii  (N1) were separated. Furthermore, 
the nauplii were transferred into another container (50 l) and 
allowed to grow until maturity, after which the adult copepods 
were used for all subsequent trials.

Estimation of development time with 
different diets

A total of 500 nauplii (N1) were inoculated in 1000 ml 
polypropylene transparent beakers filled with 500 ml of 
seawater and designated diet. Four replicates were kept 
for each treatment. A gentle aeration of one to five bubbles 
per second was supplied to all experimental containers to 
ensure sufficient oxygen and prevent food particles from 
settling (Rhodes, 2003; Miller and Roman, 2008). Every 24 
hours, 10 individuals were randomly collected from each 
beaker to estimate the development until 50% of the culture 
attained maturity (Kiorboe and Sabatini, 1995; Landry, 1983). 
Nauplius I to nauplius VI stages were counted as nauplii, 
copepodite I to copepodite V stages as copepodites, and 
copepodite VI as adult.

Egg and naupliar production with 
different diets

Five newly moulted, mature females of E. acutifrons with 
their first egg sac (Zurlini et al., 1978) were introduced into 
a custom-made two-inch diameter PVC coupling having 
a length of 5 cm, and a 125 µm mesh was attached to the 
bottom (Darsana et al., 2022; Chintada et al., 2022). The 
couplings were immersed in a 500 ml polypropylene beaker 
containing 350 ml of seawater and the designated diets. In 
this setup, the nauplii can pass through the mesh and can 
be retrieved by filtering the water from the beaker through 
a 50 µm mesh. Every 24 hours, the PVC couplings were 

removed from the beaker and examined under a stereo-
zoom microscope for any mortality and/or development of 
new egg sacs and nauplii. The nauplii that were retrieved 
from the beaker were enumerated, and naupliar production 
was assessed. The experiment continued until the death of 
 all initially stocked females in the treatment and estimated 
the total naupliar production.

Naupliar and copepodite survival and 
total life span

After enumeration, the nauplii retrieved on the first day from 
the previous experiment were transferred to a 125 ml specimen 
container with 100 ml of seawater and a designated diet. 
Every 24 hours, the development and survival of the stocked 
nauplii were examined under the stereo-zoom microscope. 
Any copepodite (C1) observed was transferred to another 
container with the same volume of water and feed. The 
survival from nauplii (N1) to copepodite (C1), C1 to adult, and 
the total life span were also assessed.

Total population and population 
composition

 Newly moulted mature females and males of E. acutifrons 
were identified (Razouls et al., 2025) and selected for 
the experiment. The adults (female: n = eight; male: n = 
two) were stocked in 500 ml seawater with different feed 
treatments in 1 l polypropylene beakers. After 10 days, the 
treatments were filtered through a 50 µm mesh, fixed using 
5% formalin, and enumerated to assess total population and 
population composition.

Statistical analysis

All the data were analysed using one-way analysis of variance 
(ANOVA). Tukey’s multiple comparisons test was used to 
determine the significant differences (p ˂ 0.05) between 
each diet treatment. All statistical analyses were conducted 
using the SPSS program, version 22. Data are presented as 
mean±standard deviation (mean±SD).

Results and discussion

Estimation of development time in 
different diets

The mean development time (days) of E. acutifrons from N1 
to C1 (Fig. 1) varied from 2.7±0.5 to 6.0±0.82 days in different 
feed treatments. Faster naupliar development was observed 
in the feed combination of microalgae CHA+CHL (2.7±0.5) 
and CHL (2.7±0.5). Slowest naupliar development in feed 
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combination ISO+PAV (6±0.82). The development rates 
were comparatively better in RBN and GNC than in other 
non-algal feeds, with a mean development time (from N1 to 
C1) of 4.2±0.50 in both cases.

The mean development time (days) from C1 to adult varied 
from 4.5±0.58 to 7.5±0.58. The mean development time 
from C1 to adult (Fig. 2) was shortest in the feed treatment 
CHA+CHL (4.5±0.58), and it was not statistically different in 
the second-best-performed diet CHA (4.7±0.50). The mean 
development time from C1 to adult was highest (7.5±0.0) in 
the treatments fed with CTJ, CSF, and ISO+PAV, which were 
statistically similar to the samples fed with CHL+PAV (7.2±0.50) 
and PAV (7±0.0). The non-algal feed RBN (5.2±0.5) and GNC 
(5.5±0.58) performed better than the other non-algal diets.

feed treatments (Fig. 4). The results were statistically not 
different (P>0.05) in the case of microalgal diets CHA+CHL 
(8±0.82 days), CHA (8.2±0.50), CHA+ISO (8.5±1.29), and the 
inert diet RBN (8.5±0.5). E. acutifrons fed with CTJ took a 
maximum period (10.7±0.50 days) to attain >50% maturity in 
the population. It was evident that the utilisation of non-algal 
diets, except RBN, is inferior to the algal diets in E. acutifrons. 
Previous studies have reported that E. acutifrons prefers 
diatomaceous algae mostly (Santos, 1999; De Troche, 2006; 
Wyckmans, 2007). It is also evident that E. acutifrons culture 
performed better when fed mixed microalgal cultures because 
of their stage-specific feed preference (Nassogne, 1970; 
Koski et al., 2006).

Egg production

Number of egg sacs per female: The total egg sacs produced 
per female during the life span of E. acutifrons (Fig. 5) in 
different treatments varied between 7±0.82 and 0.75±0.5. 
E. acutifrons fed with CHA+CHL yielded the maximum number 
of egg sacs (7±0.82), and CTJ produced the minimum number 
of egg sacs (0.75±0.5) in the life span. The number of egg 
sacs produced was very low for the non-algal diets in the 
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In the trials, the mean time (days) to first maturity (Fig. 3) 
of E. acutifrons was shortest in the treatment CHA+CHL 
(6.7±0.50), and it was delayed by up to 9.7±0.96 days in the 
samples treated with CTJ. The non-algal feeds used were 
not stable for attaining first maturity in E. acutifrons, and all 
inert feeds delayed the first maturity compared to the algal 
treatments. 50% of the E. acutifrons population attained 
their maturity within 8±0.82 to 10.7±0.5 days in different 

Fig. 1. Mean development time of N1-C1 in E. acutifrons when fed with different 
natural and artificial diets

Fig. 2. Mean development time of C1-Adults in E. acutifrons when fed with 
different natural and artificial diets

Fig. 3. Mean time to first maturity of E. acutifrons when fed with different 
microalgal and artificial diets

Fig. 4. Mean time to >50% maturity in total individuals of E. acutifrons when 
fed with different microalgal and artificial diets
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order of CSF (3±0.00) >RBN (2.5±0.58) >GNC (1.75±0.50) >CTJ 
(0.75±0.50). In laboratory conditions, E. acutifrons collected 
from Menai Straits, Anglesey, England, produced a maximum 
of 5 egg clutches per female  (Haq, 1972). In the present study, 
the maximum egg clutch produced was 7±0.82 per female, 
and the variations in the egg production of harpacticoids may 
be due to the differences in the strain (Haq 1972), temperature 
(Rajthilak, 2014; Barth Jensen et al., 2020) and feed (Castellani 
et al., 2007; Halsband and Hirche, 2001; Camus and Zeng, 
2012). E. acutifrons fed with microalgal diets produced new 
egg clutches immediately after a few hours of hatching the 
previous egg clutch, but in the case of all non-algal diets, it 
was delayed up to three or more days.  Similarly, a delay of 
3 days for the production of new egg sacs in E. acutifrons 
was recorded when fed with the diatom Phaeodactylum 
tricornutum (Haq, 1972).

Number of eggs per egg sac: The number of eggs in each 
sac (Fig. 6) varied from 6.25±0.5 to 22.5±0.58 among different 
trials. E. acutifrons fed with CHA+ISO (21.75±0.96) and CHA 
(21.25±0.50) produced maximum eggs/sac; the results were 
statistically similar to the diet CHA+CHL.  E. acutifrons can 

effectively utilise most microalgal feeds, resulting in optimum 
egg production (Boxshall and Hulsey, 2004; Camus and 
Zeng, 2009, 2012). Among the non-algal diets, feeding with 
RBN produced the highest number of eggs/sac (15.75±0.50), 
while CTJ treatment produced the lowest (6.25±0.50).  The 
number of eggs in the case of a non-algal diet may be lower, 
as providing a higher concentration of non-algal diets forms 
clumps that attach to the appendages of copepods, making 
their movement difficult (D’Apolito, 1979), ultimately resulting 
in increased mortality. Guisande et al. (1996) reported that 
E. acutifrons produced comparatively large eggs with fewer 
numbers in low food concentration and vice versa. Providing 
surplus feed in case of non-algal feeds is not applicable due 
to fouling and contamination  (Zurlini, 1978; Kahan, 1979; 
Støttrup, 2006).

Egg sac production frequency: In the present study, the 
frequency of egg sac production (in days) in E. acutifrons 
(Table 1) varied according to different diets. The average period 
between egg sac production varied from 1.7±0.5 to 3.7±0.5 
days. Copepods fed with the diets CHA+ISO (1.7±0.5 days) and 
CHA+CHL (1.7±0.5 days) produced new egg sacs more frequently 
than any other treatments. The egg production frequency was 
lower in E. acutifrons when fed with non-algal diets like CTJ 
(3.7±0.50), GNC (3.5±0.58), RBN (3±0.00) and CSF (3±0.82).

Feeding strategy can alter the quality and quantity of eggs, 
as well as the frequency of egg production, in cultured 
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Fig. 5. Number of egg sacs produced per female during their life span by E. 
acutifrons when fed with different natural and artificial diets

Fig. 6. Number of eggs per egg sac in E. acutifrons when fed with different 
natural and artificial diets

Table 1. Egg production frequency (days) in E. acutifrons when fed with different natural and 
artificial diets

Diets Frequency (days) of egg sac production (Mean±SD)

CHA 2±0.0ab

CHL 2±0.0ab

ISO 2±0.0ab

PAV 2.5±0.58abc

CHA+CHL 1.75±0.5a

CHA+ISO 1.75±0.5a

CHA+PAV 2±0.0ab

CHL+PAV 2.25±0.5ab

ISO+CHL 2±0.0ab

ISO+PAV 2.25±0.5ab

CSF 3±0.82bcd

CTJ 3.75±0.5d

GNC 3.5±0.58cd

RBN 3±0.0bcd
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copepods (Kleppel, 1993; Alajmi and Zeng, 2015; Dayras, 2021). 
In the present study, although survival and egg production 
were observed in all diets, both survival and egg production 
frequencies were lower in the non-algal diets, which may 
be due to the differences in the nutritional quality of the 
microalgal and artificial diets. Goswami (1976) and Zurlini 
et al. (1978) reported that the quality and quantity of food 
influence the total egg production and egg production 
frequency in E. acutifrons.

Egg hatching success: Maximum egg hatching success 
 (Fig. 7) was observed in the diet treatments with CHA+ISO 
(95.5±4.04%) and is statistically similar to the treatments CHA 
(94.25±3.86%) and ISO (94.5±4.36%). Jasmine et al. (2016) also 
reported maximum egg hatching success in the combination 
of CHA+ISO in E. acutifrons. The egg hatching success 
obtained using the non-algal diet RBN was 87.25±2.5%, 
which was similar to that of other non-algal diets, such as 
GNC (86±8.16%) and CSF (81.5±5.51%).

CHA+CHL. This result was statistically similar (P>0.05) to 
those of the treatment CHA+ISO (88.5±3.87%) and CHA 
(83.5±4.20%). In E. acutifrons, the highest naupliar and 
copepodite survival was found in the mixed diet of Tetraselmis 
and Chaetoceros (Camus and Zeng, 2012). In Nitokra affinis, 
the maximum population growth was observed in C. marina 
(Rajthilak et al., 2014), and in Acartia bilobata, maximum 
nauplii and copepodite survival was observed in Isochrysis 
galbana (Chintada et al., 2022). In the present study, RBN 
performed better (53.25±6.08 %) among the non-algal diets, 
and CTJ showed the least survival in the copepodite stage 
(37.25±11.32%).  Similarly, carrot juice was an inferior diet for 
N. affinis (Rajthilak et al., 2014).

Life span

The average lifespan (days)  (Fig. 10) of the copepod 
E. acutifrons varied significantly with different feed treatments. 
The longest life span (30.5±0.58) was observed in the trials 
with CHA+CHL, and the shortest was with CTJ (13.5±0.58). 
 The RBN (21.5±0.58) and CSF (21± 1.15) resulted in a better 
average lifespan among non-algal diets.
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Fig. 7. Egg hatching success in E. acutifrons fed with different natural and 
artificial diets

Fig. 8. Naupliar survival (%) of E. acutifrons fed with different natural and 
artificial diets

Fig. 9. Copepodite survival (%) of E. acutifrons fed with different natural and 
artificial diets

Naupliar and copepodite survival

Naupliar survival percentage (Fig. 8) of the copepod 
E. acutifrons fed with different feeds showed significant 
variations between treatments. In the treatment, CHA+ISO, 
91.75±0.50% of the total nauplii survived up to copepodites. 
The least naupliar survival was observed in the feed treatment 
PAV (30±5.89%). Among the non-algal feeds, RBN (60.5±3.70) 
supported the highest naupliar survival, and CTJ (34.25±7.14%) 
was the lowest. The result correlates with that of Jasmine 
et al. (2016), which reported the maximum naupliar survival 
for the combination of CHA+ISO. In general, harpacticoids 
prefer diatomaceous algae (Santos, 1999; De Troche, 2006; 
 Wyckmans, 2007).

Maximum survival (89±5.77%) (Fig. 9) of E . acutifrons 
from copepodites to adults was observed in the treatment 
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In the present study, a positive, combined effect of CHA+ISO 
was observed on sexual maturity, egg production frequency, 
number of eggs per egg sac, egg hatching success, naupliar 
survival, and copepodite survival. This finding also aligns 
with the results of Jasmine et al. (2016), who reported that 
CHA+ISO yielded the maximum survival, faster maturity, 
higher egg production, and hatching success. The effect of 
ISO on naupliar development was reflected in the population 
growth experiment, where the maximum number of nauplii 
developed into copepodites in samples fed ISO or its 
combinations. Payne and Rippingale (2001) reported that 
the fatty acid profile of I. galbana has an increased DHA: EPA 
ratio, a desirable quality of live feed, which helps copepods 
for better egg production.

Total population and population 
composition

The feed utilised directly influenced the population growth 
of E. acutifrons. A maximum number of nauplii (Fig. 11) was 
present in the samples fed with CHA+CHL (5368.25±208.79) 
and a minimum in the samples fed with CTJ (1.5 ±2.60a). 
Among the artificial feeds, RBN (1087.25 ±79.52) performed 
better. The number of copepodites (Fig. 11) was maximum 
in E. acutifrons fed with CHA+ISO (141.5±10.43) and was not 
statistically much different from the number of copepodites 
present in the samples fed with CHA (131.5 ±19.86) and 
CHA+CHL (129.75±12.19). Among the non-algal feeds, RBN (67 
±9.64) performed better, and the least output was observed 
in the samples fed with CTJ (0.25±0.43). The maximum 
number of adults (Fig. 11) was observed in the treatment 
CHA+CHL (479.25±4.32), and the minimum number was in 
CTJ (31±2.55). Among non-algal diets, RBN performed better 
than all other non-algal feeds (108±6.75). The number of 
egg-bearing females (Fig. 12) was higher in the samples 
fed with CHA+ISO (117.5±3.77) and CHA (113.75±4.87) and 
was lower in samples fed with CTJ (17.75±4.71). Among the 

non-algal feeds, the performance of RBN-fed (70.75±4.76) 
was better.

In contrast to the findings of Jasmin et al. (2016), the present 
study yielded  promising results from the microalgae 
CHL, particularly when combined with ISO. In general, 
combinations of microalgae CHA+ ISO gave better output 
for many parameters observed in the present study. It may 
be assumed that small-sized algal feeds favour the survival 
and development of lower developmental stages, while adult 
copepods prefer larger cells  (Wilson, 1973; Jasmin et al., 2016). 
This size preference for different developmental stages of 
copepods in large laboratory cultures is also recommended 
by many researchers  (Murray and Marcus, 2002; McKinnon, 
2003). Similarly, Berggreen et al. (1988) reported that in 
the copepod Acartia tonsa, the size of microalgae directly 
influences the feeding efficiency in various developmental 
stages. Findings of Nassogne (1970) concluded that the 
minimum size of the algal cell that can be handled and 
retained by adult E. acutifrons in its setae is 6-7 µm. This 
study also suggested that the mixed feeding strategy is 
one of the most successful modes of feeding E. acutifrons 
cultures, which supports all developmental stages equally.
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Fig. 10. Lifespan (days) of E. acutifrons fed with different natural and  
artificial diets

Fig. 11. Population composition of E. acutifrons fed with different natural and 
artificial diets

Fig. 12. Number of egg-bearing females of E. acutifrons fed with different 
natural and artificial diets
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The present study confirmed that E. acutifrons can survive 
on all the algal and inert diets used, but the performance of 
non-algal diets was very poor. It was also observed that the 
diet with the diatom, CHA, and its combinations with other 
selected microalgae were better for maximum population 
growth in E. acutifrons. In contrast , poor performance of 
calanoid copepods fed with diatoms has been reported by 
 Miralto et al. (1999), Buttino et al. (2009) and Turner et al. 
(2001). However, in harpacticoids, diatomaceous algae are 
more popularly recommended (Santos, 1999; De Troche, 2006; 
Wyckmans, 2007). Poor performance was observed in the 
algal diets with PAV and its combinations.  For E. acutifrons, 
PAV is the least preferred diet and results in developmental 
abnormalities (Camus and Zeng, 2012).

Conclusion

The feed offered to the copepods directly influences the overall 
quality of the culture medium physically and biologically. Even 
though E. acutifrons accept a wide variety of phytoplankton, 
inert particles, and microorganisms; however, the non-algal 
feeds affected the performance of copepods in all trials. This 
confirms that the non-algal diets tried here are not suitable 
for the culture of E. acutifrons. In general, microalgae are the 
natural food source of E. acutifrons in the wild, and artificial 
feed may lack the diversity of nutrients in both quality and 
quantity. Moreover, the non-algal feeds easily form larger 
clumps in the culture medium, which eventually attach to the 
appendages of copepods, increasing mortality and making 
harvesting more difficult. Low-cost, non-conventional diets can 
be utilised only when the output is sufficiently high in terms of 
both quantity and quality, and they should also be produced 
economically. Unfortunately, all the non-conventional diets 
tried here, especially the vegetable juices and commercial 
fish feeds, considerably deteriorated the water quality and 
promoted the growth of ciliates and other contaminants. 
Non-conventional feed, like vegetable juices and other inert 
feeds, is not advisable for E. acutifrons culture. In conclusion, 
better nutrient quality and digestibility of microalgae make 
them more efficient as an ideal feed for E. acutifrons, both 
for short-term and long-term culture. It is also concluded 
that among all the feeds tested here, overall performance 
was better in the combination of Chaetoceros calcitrarns 
and Chlorella marina and in general, the C. calcitrans and its 
combination are the ideal feed for the hatchery production 
of E. acutifrons.
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